全球14家顶尖 AI 产业巨头深度学习实力及战略分析 - 大数据 大知识
当前位置:首页 > 大数据 大知识 > 正文

全球14家顶尖 AI 产业巨头深度学习实力及战略分析2016-12-14 14:53:22 | 编辑:hely | 查看: | 评论:0

在这篇文章中,我只想指出,各家机构对 AI 的研究重点各不相同。不同的机构在他们认为重要的研究领域有不同的优先级。一场 AI 军备竞赛已经拉开序幕,而最终的赢家则是幸运地把资源投入到了可能获胜的研究方法上的人。这个几率确实很小,但考虑到涉及的高回报,每家公司看来都正在进行这场赌博。

长期以来,我一直在努力理解深度学习的研究发展。我使用的方法论是模式设计编目(cataloging of Design Patterns),它对于分析这个复杂程度不断增长的领域相当有效。事实上,由于该领域的巨头持续在发表新的令人惊讶的研究成果,我自己对这些概念的理解也将继续调整。

然而,我观察到的某些模式实际上超出了对深度学习的一般理解范围。我观察到的是,不同的尖端研究团体似乎侧重使用不同种类的方法来解决人工智能的谜题。不过,预先声明,我并不了解这些组织内部的运作机制,以下内容都是我个人的观察思考而已。

幸运的是,通过阅读这些机构发表的研究成果,你就会有这样的感觉:各个团体所喜欢的方法各不相同(注意:这些方法不是相互排斥的)。所以,请让我顺便说明一下自己对于偏见(或偏好)的直觉——领域里的每个大玩家都在如何研究深度学习。

谷歌 DeepMind:强化学习&深度学习

 

\

 

谷歌在看到 DeepMind 的 Atari 游戏 AI 之后将 DeepMind 收购。自此,DeepMind 一直喜欢在他们的方法中使用强化学习。他们肯定将深度学习作为大多数研究的组成部分,但似乎总是强调深度学习与强化学习的组合,也就是深度强化学习。

DeepMind 深度学习研究大多集中于在模型中的非参数层嵌入使用变分法。DeepMind 还关注注意力机制和记忆增强网络。在研究的广度上,我认为没有组织能企及 DeepMind。DeepMind 的研究驱动力似乎是想要发现智能的本质。

你可以在这里了解他们的更多工作:https://deepmind.com/research/publications/

谷歌大脑:侧重实用和工程,强调应用可扩展

 

\

 

谷歌大脑在处理研究方面有着很明显的侧重实用和工程的方法。你可以看到他们如何对 inception 架构进行各种各样的细节调整。他们在围绕可用的计算资源如何搭建深度学习架构方面做了大量的工作。谷歌还结合了其他传统算法,如 beam search、图遍历和深度学习的广义线性模型。这种方法似乎也强调了对可扩展解决方案的需求。(编注:很奇怪这里作者没有提到谷歌挖来 Hinton、李飞飞、李佳等学术大牛及他们进入谷歌后所的研究。)

得益于其庞大的计算和数据资源,谷歌(大脑)在深度学习方面取得了令人印象深刻的成果。你可以在这里找到他们的研究:https://research.googleblog.com/

Facebook / FAIR:重视基础理论研究,但主线不明

 

\

 

这是由Yann LeCun 领导的团队,目前还不清楚它的实力有多么强大,因为大多数创新研究似乎都来自于 LeCun 在纽约大学的研究小组。 LeCun 的团队进行的是探索深度学习基本层面的实验性研究。在研究深度学习基础理论这一方面,目前各大机构的研究团队花费的功夫不多。

FAIR 已经在 Torch上发布了几个不错的开源实现项目,在某些问题上使用深度学习做出了一些成绩。然而,很难看出 FAIR 有任何特定的研究偏好。我发现很难从他们的研究工作中看出一个主线。也许你可能有更好的运气:https://research.fb.com/publications/?cat=2

微软:底蕴深厚,实力不凡

 

\

 

类似于谷歌,微软的方法非常实际并且面向工程。微软拥有一流的计算机科学人才,发明残差网络就是一个例子。微软还有其他新颖的方法,例如 Decision Forrest,这些表明微软显然是深度学习领域思想的领导者而非只是追随。微软的认知工具包,虽然参与 AI 这场游戏比较晚,但是从工程上说品质很高。微软的开源深度学习平台 CNTK 可能是使用分布式计算学习方面最好的框架之一。

可以说,微软在深度学习方面的研究贡献可能仅次于谷歌。这可是相当了不起的,因为没有研究深度学习出身的研究人员加入他们的团队。请参考:

https://www.microsoft.com/en-us/research/research-area/artificial-intelligence/

OpenAI:偏爱对抗生成网络

 

\

 

OpenAI 是由 Elon Musk 等人创办的,成立的初衷是他们害怕其他公司大幅吸取深度学习人才。如果不能在财务上竞争(给予高新),OpenAI 就提供学术上的自由——这也的确吸引到了很多的人才,包括从谷歌。

OpenAI 倾向于使用生成模型,更具体地说,是对抗生成网络(GAN)。他们还对增强学习环境做出了认真的努力(例子是 OpenAI Gym)。很奇怪的是,尽管 GAN 的性能表现如此之好,但是 DeepMind 似乎更偏爱变分模型(variational model)。

微软已经向 OpenAI 提供了 Azure 服务,因此可以认为微软与 OpenAI 已经结成联盟。此外,就在 NIPS 2016 开会的前一天,OpenAI 发布了 Universe,后者是一个在几乎所有环境中衡量和训练 AI 通用智能水平的开源平台。而且,其合作伙伴可是有一大堆显赫的公司名字。

OpenAI 的研究重点概述在这里:https://openai.com/requests-for-research/。

蒙特利尔大学/Yoshua Bengio 团队:仅存的学术重镇

 

\

 

这是 Yoshua Bengio 带领的小组,经常发表论文。Bengio 是少数意志坚定的研究人员,目前还没有不向任何一家商业实体屈服(不过,Bengio 自己试图在蒙特利尔构建 AI 生态圈,并且参与创立了一个名叫 Element AI 的孵化器,以强大的学术实力为卖点,为企业提供独一无二的解决方案,还以合资经营的方式扶持 AI 初创公司)。

与 LeGun 在 NYU 的研究小组类似,Bengio 团队也侧重于弄清深度学习的工作原理。此外,该团队还建立了很多深度学习新模型和学习算法。MILA(蒙特利尔大学学习算法学院)可以说是地球上最好的学术深度学习研究小组,详见 https://mila.umontreal.ca/en/。

谷歌非常精明,通过资助 Bengio 的小组进行一些间接的控制。这一举措促使 Hugo Larochelle 离开 Twitter(迅速退出产业界),并加入谷歌在蒙特利尔新成立的AI 实验室。

上一篇:从自动驾驶到学习机器学习:解读2017科技发展的15大趋势 《纽约时报》两万字长文,深度剖析谷歌大脑简史下一篇:

公众平台

搜索"raincent"或扫描下面的二维码